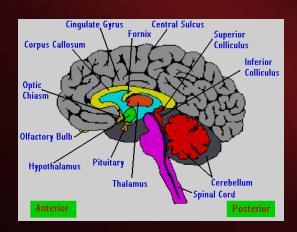
Powersystems World

Power Analytics

The Business of Power Analytics - Power Qualities

New Frontier


Kevin P. Meagher October 25-27, 2005 EDSA Micro

Modeling, Simulation & Visualization

- Models & Modeling is universally accepted as the optimal method for dynamic and complex system simulation
 - Cost effective
 - iterative
 - Predicts real-world behavior

- Visualization presents complex systems facilitating pattern recognition
 - Pattern recognition is arguably the center of human learning.
 - Virtually limitless permutations

Analytics

- Business Analytics
 - Can be model based
 - Can be free form (discovery process)
 - Combines real-time data with structured data (data warehouses)
 - Primary application is discovery and forecasting.

- Power Analytics
 - Can be model based
 - Can be free form (discovery process)
 - Combines real-time data with structured data (modeling & simulation)
 - Primary application is discovery and prediction

Business Analytics User

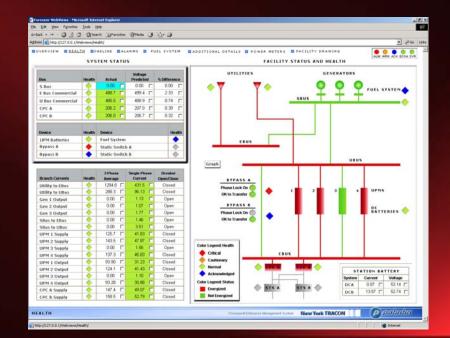
- Target User is not an Analyst
 - Analytical tools for non-analysts drive the structure, user interface and application.
- Pattern recognition (visualization) and alternatives
 - Tools provide alternate designs, order, methods and projections.

Depicts a Naïve-Bayes model for predicting which people earn more than \$50,000 in yearly salary. Stanford University, Emerging Trends in Business Analytics, 2002

Business Analytics

Examples

- USAF F-16 gyroscopes
- Terabytes of data and real-time data.
- Visualization techniques used to "observe trends",
- Analytics reveal seasonal failure increases (Nov-Feb)
- Result increase reserves of gyroscopes

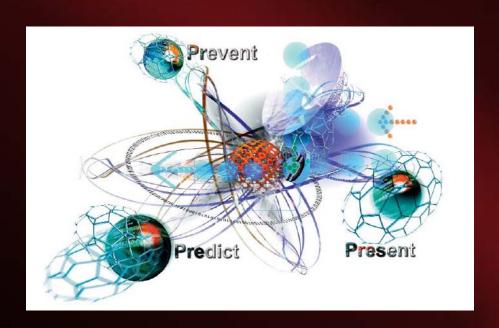


Power Analytics User

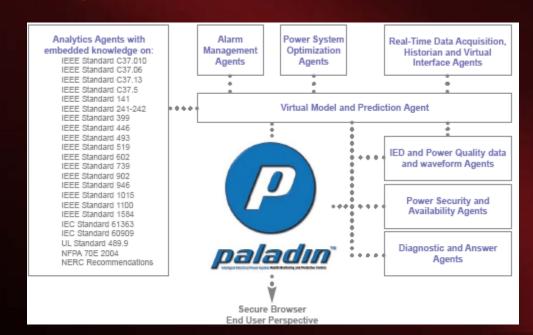
- Target user is not an analyst
 - Power systems are highly complex systems
- Higher tendency for real-time decision making than business analytics
 - Decision process can involve significant financial and safety concerns.

- Pattern recognition and visualization ("dash board")
 - Model predicts behavior based on system design
- Operational capabilities define performance requirements.

EDSA Technical 2004


- Power systems modeling and simulation
 - EDSA Technical 2005 system design is the source for EDSA Paladin Power Analytics.

- Fault Analysis
- Arc Flash Exposure
- Power Flow Robust
- Power Quality
 - 3-phase & 1-phase
- Protection Coordination
- DC System simulation
- Transient Stability

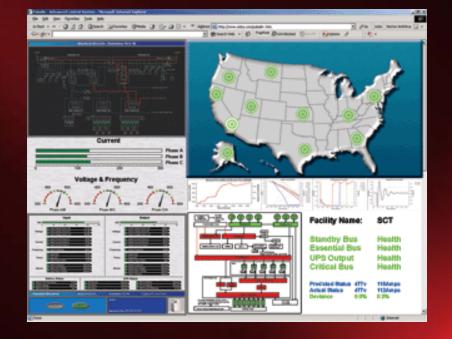

Paladin Power Analytics

 EDSA uses Technical 2004 designs and the associated simulation and modeling tools in combination with a real-time, enterprise system.

EDSA Paladin

- Massively, secure scalable architecture with a true thin client (browser based).
 - Agent technology interfacing to all major power and support equipment for real-time data acquisition.
 - Full device support (including waveform display and analysis) for the industry leading in-line power quality meters.

US Critical National Airspace Infrastructure


- Considered the most mission critical airspace in the world.
- Developed from Department of Defense "dual use" development.

System Demonstration

- Part of a mission critical infrastructure
- Devices include:
 - Power quality meters
 - Real time sensory input
 - Multi-module UPS
 - Engine generators
 - Model predictions

Summary

Paladin Power Analytics

- Promises to advance the science and technology of applied power analysis for non-power professionals
- Combines sophisticated modeling and real-time data acquisition through a non-technical and secure browser
- Non-vendor specific and massively scalable